

ROBOTICS

RB1000i

Connected Atomizer - Optimize and secure paint quality and uptime

The Connected Atomizer is the first connected, sensor-equipped, robotic paint atomizer that allows real-time smart diagnostics by providing an environmentally friendly system turnkey solution for increasing uptime and ensuring zero quality defects.

01 Comparison with conventional model

02 BOC function: BOC (Bell cup Outside Cleaning) function, which automatically flushes the rim back of the bell cup

03 SFC function: SFC (SA nozzle Face Cleaning) function, which automatically flushes the SA nozzle surface that has the small air discharge holes The RB1000i increases transfer efficiency by 10%⁰¹, reduces paint loss inside atomizer during color changes by 75%, and reduces compressed air consumption by 20%, in total to save customers cost.

Digitally enabled paint atomizer

The Connected Atomizer is the first connected, sensor-equipped, robotic paint atomizer allows for real-time smart diagnostics and precise paint control to optimize painting quality. This new level of digitalization supports robot users' transition towards the factory of the future. By monitoring the condition of key atomizer components such as bell cups, air motors, and shaping air ring, as well as variables such as acceleration, pressure, vibration and temperature, the painting transfer efficiency can be boosted by up to 10%. This also eliminates the need for costly downtime for repainting or touchups.

First-in-class in terms of performance

This paint atomizer increases transfer efficiency by 10%, reduces internal atomizer waste during color changes by 75%, and reduces compressed air consumption by 20% which can collectively save millions of dollars.

The atomizer adapts the SA (shaping air) nozzle with the super pattern control function in which the range of the effective pattern width is wider than before. This function results in minimizing over spray by controlling the dual shaping airs individually and switching to the optimum pattern width for the shape of the object being painted.

Contribution to improving paint line operation rate

The atomizer also adopted both the conventional BOC function ⁰² and the SFC function ⁰³. These functions make possible to automatically clean the inside of the bell cup and at the same time automatically clean the rim back of the bell cup and the SA nozzle surface that has the small air discharge holes. The automated production line does not require to stop temporarily in order to remove dirt adhered near the air discharge holes, which contributes to the reduction of maintenance time and to the improvement of the paint line operation rate.

Features

Cost reduction ⁰¹

- Transfer efficiency: +10%
- Color change loss inside atomizer: -75%
- Required bearing air pressure: 6 bar
- Air consumption: -20%
- Ease of maintenance
- Robust air motor with longer life time
- Modular design, common parts across different variants
- Weight: -17%
- Ex certification: Zone 1

01 The weight differs depending on the specification

02 These are the values when the flow rate is 400 cc/min. For other conditions or details, please contact ABB

03 The maximum flow rate differs depending on paint viscosity or built-in paint tube

04 These are general values and do not necessarily guarantee quality

05 The sensor is optional

06 A reader of the RFID tags is optional

Technical information

. . .

Specifications				
RB1000i				
Bell cup	ø70 (BOC), ø40 (BOC)			
Shaping air nozzle				
Function	 Super pattern control function SA nozzle face clenaning (SFC) function 			
Effective spray ø70	250~500 mm			
pattern Width ø40	60~400 mm			
High voltage				
Charging method	Internal charge			
Voltage applied	Max90 kV			
HV current	Max. 150 μA			
Set rotation speed	Max. 60,000 rpm			
Weight ⁰¹	Approx. 8.8~9.0 kg			
Total air ø70 consumption ⁰²	695~1565 NI/min			
Paint Flow rate ^{03 04} Ø70	100~1000 cc/min			
Sensor ⁰⁵	 Vibration sensor Gyroscope Temperature sensor 			
RFID tag ⁰⁶	 Bell cup SA nozzle Air bearing motor 			

aint solution					
	SSD type	SAD type	S2K type		
Automobile					
Exterior	x	х	х		
Interior	x	х	х		
Bumper	x	х	х		
Part	x	х	х		
General Industry					
Large	x	х	х		
Small	x	х	х		

Paint type						
	SSD type	SAD type	S2K type			
Primer paint	x	x	x			
Base paint	х	х	х			
Clear paint	x	х	х			
Solventborne						
1K paint	х	х	-			
2K paint	x	-	х			
Waterborne (non-	electrostatic typ	e only)				
1K paint	x	х	-			
2K paint	x	-	x			

Dimensions

RB1000i

ABB K.K.

ThinkPark Tower 22F 2-1-1 Osaki, Shinagawa-ku Tokyo 141-6022 Japan Phone: +81 3 4523 6308 We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. Copyright© 2017-2023 ABB All rights reserved