

Chengdu Ebyte Electronic Technology Co.,Ltd

# Wireless Modem User Manual



All rights to interpret and modify this manual belong to Chengdu Ebyte Electronic Technology Co., Ltd.



# Contents

| Features                                           | 3  |
|----------------------------------------------------|----|
| 1 Quick Start                                      | 4  |
| 1.1 port connection                                | 4  |
| 1.1.1 RS485 connection                             | 4  |
| 1.2 Quck Use                                       | 5  |
| 1.2.1 RS485 bus control                            | 6  |
| 2 Product Introduction                             | 9  |
| 2.1 Basic parameters                               | 9  |
| 2.2 Dimensions, interface description              | 10 |
| 2.3 Description of Reload touch button             | 13 |
| 3 Modbus                                           | 14 |
| 3.1 Modbus address table                           | 14 |
| 3.2 Modbus address table                           | 15 |
| 3.3 RS485 serial port baud rate code value table   | 15 |
| 3.4 RS485 serial port parity code value table      | 16 |
| 3.5 Configure parameters through the host computer | 16 |
| 4 Product Functions                                | 17 |
| 4.1 Working mode                                   | 17 |
| 4.2 IO basic functions                             | 18 |
| 4.3 IO Features                                    | 22 |
| 4.4 Network related functions                      | 24 |
| Revision history                                   | 32 |
| Contact us                                         | 32 |

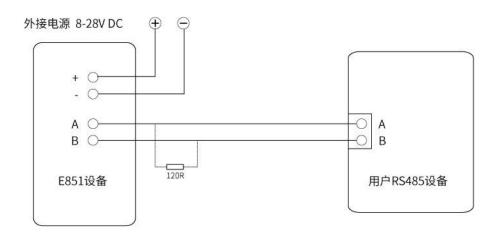


# E851-RTU(4440-ETH) Features

- Support 4 differential analog inputs, default current detection;
- Support 4 digital inputs, default dry contact;
- Support 4 relay outputs;
- Support socket connection to remote server, support TCP Client;
- Using Modbus TCP/RTU protocol data processing;
- Support connection to Ebyte cloud, command control;
- Support 2 working modes, host mode and slave mode, the slave can cascade multiple devices through RS485;
- Support Reload touch button, long press for 5s, Modbus device address, RS485 serial port baud rate and parity digit restore factory settings;
- Hardware watchdog with high reliability;
- Multiple indicator lights show working status;
- The power supply has good over-current, over-voltage, anti-reverse and other functions.

Note: Customers can customize functions, such as conditional control (determine how to output according to the input state)

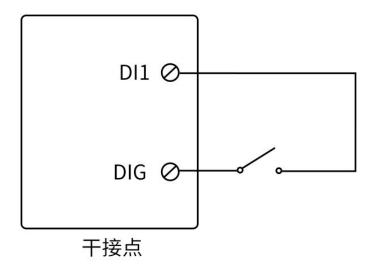



# 1 Quick Start

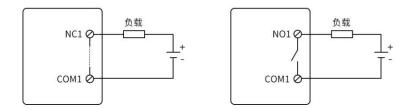
This chapter is a quick introduction to the E851-RTU (4440-ETH) series products. It is recommended that users systematically read this chapter and follow the instructions to have a systematic understanding of the module products. Users can also choose what you are interested in according to their needs, chapters to read. For specific details and instructions, refer to subsequent chapters.

# 1.1 port connection

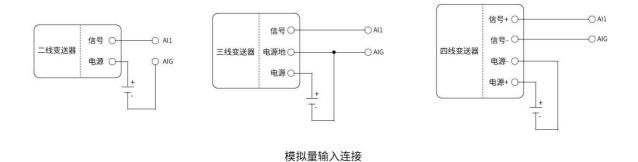
#### 1.1.1 RS485 connection


#### RS485接线图




Note: When the 485 bus high-frequency signal is transmitted, the signal wavelength is shorter than the transmission line, and the signal will form a reflected wave at the end of the transmission line, which will interfere with the original signal. Therefore, it is necessary to add a terminal resistor at the end of the transmission line so that the signal does not reflect after reaching the end of the transmission line. The terminal resistance should be the same as the impedance of the communication cable, the typical value is 120 ohms. Its function is to match the bus impedance and improve the anti-interference and reliability of data communication.




# 1.1.2 Digital input connection



# 1.1.3 Relay output connection



# 1.1.4 Differential Analog Input Connections



# 1.2 Quck Use

Wiring: Computer connects to E851-RTU (4440-ETH) via USB to RS485

Networking: the network cable is inserted into the RJ45 port

Power supply: E851-RTU (4440-ETH) working voltage is DC 8~28V



# 1.2.1 RS485 bus control

Select the corresponding port and click Search to search for devices.



After the device is found, click Stop.

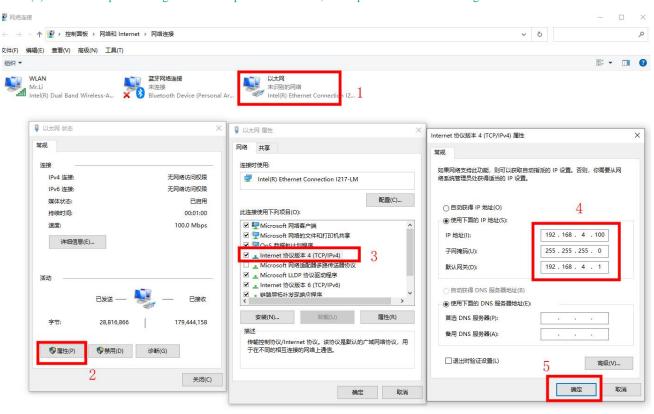


At this time, you can see the device address of the current device, and for the "automatic refresh"  $\sqrt{}$  process, you can perform switch output control, switch input reading, and differential analog input reading.





# 1.2.2 Network acquisition control (static IP connection directly controls the product)

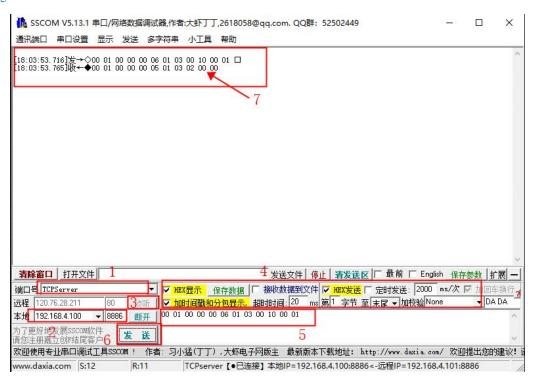

Step preview: network control hardware connection - PC computer settings - product connection parameter setting - use network debugging tools to connect products - send control/acquisition instructions

(1) Network acquisition control hardware connection: use a network cable to directly connect the computer network port to this product, and use a USB to RS485 tool to connect the computer USB to the product RS485.





(2) PC-side computer settings: set the computer to a static IP, the steps are as shown in the figure below.




(3) Product connection parameter setting: as shown in the figure below (default factory setting).





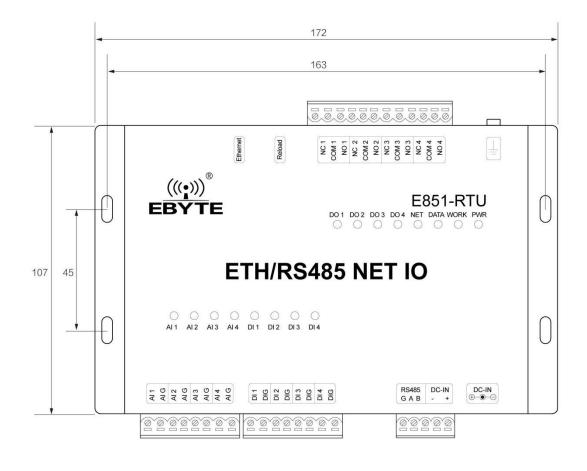
(4) Connect to the product with a network debugging tool: here we take the sscom .exe debugging tool as an example. 1 Open a TCPServer service—2 Output the server IP connected to the product: 192.168.4.101 and service port —3 Click Listen (that is, connect to the product, if the word "Listen" cannot be grayed out, please check the above Parameter setting and hardware connection) - 4 Set data sending rules - 5 Edit product instructions (the picture shows reading the AI1 channel acquisition value, see " Chapter 4 Product Functions " for more instructions) - 6 Click "Send" ——7 Return message received--successful.

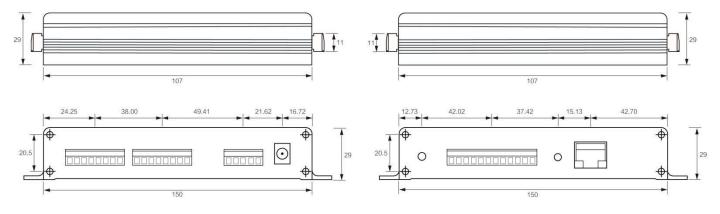


(5) See "4.1 Working Mode" for more connection methods.

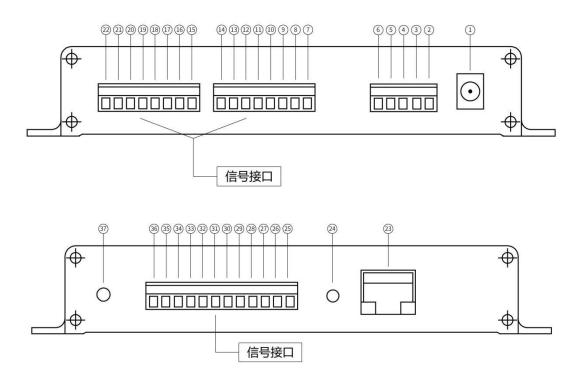
# 2 Product Introduction

E851-RTU (4440-ETH) is a network IO product that supports 4 digital inputs (default dry contact), 4 differential analog inputs, and 4 relay outputs. Support Modbus TCP/RTU protocol. The product is highly usable, and users can easily and quickly integrate it into their own systems to realize Ethernet-based remote control.


# 2.1 Basic parameters


|                     | project               | index        |
|---------------------|-----------------------|--------------|
|                     | Product size (H*W*D)  | 172*107*29mm |
|                     | product weight        | 457.5±5g     |
|                     | Operating temperature | -20°C∼+70°C  |
| hardware parameters | storage temperature   | -40°C∼+85°C  |
|                     | Working humidity      | 5%~95%       |
|                     | storage humidity      | 1%~95%       |
|                     | Operating Voltage     | 8V~28V       |




|                     | Current acquisition range | 0mA~20mA                |
|---------------------|---------------------------|-------------------------|
|                     | precision                 | 0.2%                    |
| Data interface      |                           | RS485: 1200~115200bps   |
|                     | Network Type              | ethernet                |
|                     | configuration command     | Modbus TCP/RTU          |
| software parameters | Network protocol          | Modbus TCP/RTU          |
|                     | Operating mode            | Master mode, slave mode |
|                     | data transfer method      | TCP Client              |

# 2.2 Dimensions, interface description









| serial number | Port and other definitions | Features                              | illustrate                                           |
|---------------|----------------------------|---------------------------------------|------------------------------------------------------|
|               |                            |                                       | Power input terminal, DC 8V~28V, 12V/24V is          |
| 1             | DC-IN seat                 | DC socket 5.5*2.1mm                   | recommended, and it cannot be powered at the same    |
|               |                            |                                       | time as the crimping terminal                        |
|               |                            | Pressure wire type power              | Power input, DC 8V~28V, it is recommended that       |
| 2             | DC-IN+                     | input positive pole                   | 12V/24V cannot be powered simultaneously with the    |
|               |                            | input positive pole                   | DC socket                                            |
| 3             | DC-IN -                    | Negative pole of crimping power input | power reference ground                               |
| 4             | RS485B                     | RS485 interface B                     | RS485 interface B is connected to device B interface |
| 5             | RS485A                     | RS485 interface A                     | RS485 port A is connected to device A port           |
| 6             | RS485G                     | signal reference ground               | Signal reference ground, may not be connected        |
| 7             | DIG                        | switch input ground                   | Can be paired with DI 4                              |
| 8             | DI 4                       | Digital input channel 4               | Form dry contact with DIG                            |
| 9             | DIG                        | switch input ground                   | Pair with DI 3                                       |
| 10            | DI 3                       | Digital input channel 3               | Form dry contact with DIG                            |
| 11            | DIG                        | switch input ground                   | Can be paired with DI 2                              |
| 12            | DI 2                       | Digital input channel 2               | Form dry contact with DIG                            |
| 13            | DIG                        | switch input ground                   | Can be used as a pair with DI 1                      |
| 14            | DI 1                       | Digital input channel 1               | Form dry contact with DIG                            |
| 15            | AIG                        | Differential analog input             | Com he mained with AI 4                              |
| 13            | AlG                        | ground                                | Can be paired with AI 4                              |
| 16            | AI 4                       | Differential analog input             | Differential analog input pin, forms input with AIG  |
| 10            | Al 4                       | channel 4                             | Differential analog input pin, forms input with AIG  |
| 17            | AIG                        | Differential analog input             | Can be paired with AI 3                              |



|              |                                        |                                     | ground                                                     |                                                          |  |  |
|--------------|----------------------------------------|-------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--|--|
| 18           | AI 3                                   | Differential analog input channel 3 |                                                            | Differential analog input pin, forms input with AIG      |  |  |
| 19           | AIG                                    | Differential analog input ground    |                                                            | Can be paired with AI 2                                  |  |  |
| 20           | AI 2                                   | Differe                             | ential analog input channel 2                              | Differential analog input pin, forms input with AIG      |  |  |
| twenty one   | AIG                                    | Differe                             | ential analog input                                        | Can be paired with AI 1                                  |  |  |
| twenty two   | AI 1                                   | Differe                             | ential analog input<br>channel 1                           | Differential analog input pin, forms input with AIG      |  |  |
| twenty three | Ethernet                               | N                                   | letwork port                                               | Ethernet port                                            |  |  |
| twenty four  | Reload                                 | 1                                   | reset button                                               | Long press 5s to work                                    |  |  |
| 25           | NC 1                                   | Relay                               | 1 normally closed pin                                      | Used in conjunction with relay 1 common                  |  |  |
| 26           | COM 1                                  | Relay 1                             | common terminal                                            | Works with Relay 1 normally open pin/normally closed pin |  |  |
| 27           | NO 1                                   | Relay 1                             | normally open pin                                          | Used in conjunction with relay 1 common                  |  |  |
| 28           | NC 2                                   | Relay 2 normally closed pin         |                                                            | Use with Relay 2 Common                                  |  |  |
| 29           | COM 2                                  | Relay 2 common terminal             |                                                            | Works with Relay 2 normally open pin/normally closed pin |  |  |
| 30           | NO 2                                   | Relay 2 normally open pin           |                                                            | Use with Relay 2 Common                                  |  |  |
| 31           | NC 3                                   | Relay 3 normally closed             |                                                            | Used in conjunction with relay 3 common                  |  |  |
| 32           | COM 3                                  | Relay 3                             | common terminal                                            | Works with Relay 3 normally open pin/normally closed pin |  |  |
| 33           | no 3                                   | Relay 3                             | normally open pin                                          | Used in conjunction with relay 3 common                  |  |  |
| 34           | NC 4                                   | Relay                               | 4 normally closed pin                                      | Use with relay 4 common                                  |  |  |
| 35           | COM 4                                  | Relay 4                             | common terminal                                            | Works with Relay 4 normally open pin/normally closed pin |  |  |
| 36           | no 4                                   | Relay 4                             | normally open pin                                          | Use with relay 4 common                                  |  |  |
| 37           | ground screw                           | conne                               | ected to the earth                                         | connected to the earth                                   |  |  |
|              |                                        |                                     | led light                                                  |                                                          |  |  |
| AI 1         | Differential analog channel 1 indicati | -                                   | Green LED, lights up for sufficiently large input (≥0.5m   |                                                          |  |  |
| AI 2         | Differential analog channel 2 indicati |                                     | Green LEI                                                  | D, lights up for sufficiently large input (≥0.5mA)       |  |  |
| AI 3         | Differential analog channel 3 indicati | -                                   | Green LED, lights up for sufficiently large input (≥0.5mA) |                                                          |  |  |
| AI 4         | Differential analog channel 4 indicati | -                                   | Green LED, lights up for sufficiently large input (≥0.5mA) |                                                          |  |  |



| DI 1 | Digital input channel 1 indication | Green LED, DI 1, DIG short circuit lights up                                                 |  |
|------|------------------------------------|----------------------------------------------------------------------------------------------|--|
| DI 2 | Digital input channel 2 indication | Green LED, DI 2, DIG short circuit lights up                                                 |  |
| DI 3 | Digital input channel 3 indication | Green LED, DI 3, DIG short circuit lights up                                                 |  |
| DI 4 | Digital input channel 4 indication | Green LED, DI 4, DIG shorted on                                                              |  |
| DO 1 | Relay 1 output indication          | Green LED, NO 1, COM 1 closed light up                                                       |  |
| DO 2 | Relay 2 output indication          | Green LED, NO 2, COM 2 closed light up                                                       |  |
| DO 3 | Relay 3 output indication          | Green LED, NO 3, COM 3 closed light up                                                       |  |
| DO 4 | Relay 4 output indication          | Green LED, NO 4, COM 4 closed light up                                                       |  |
| NET  | network instructions               | Yellow LED, always on after connecting to the network                                        |  |
| DATA | Serial port data indication        | Yellow LED, lights up when the RS485 interface has data transmission (expressed as flashing) |  |
| WORK | Work/reset indication              | Yellow LED, flashes regularly/flashes quickly after successful reset                         |  |
| PWR  | Power indicator                    | Red LED, always on                                                                           |  |

Notice:

Grounding: It is recommended to connect the shell to the earth

# 2.3 Description of Reload touch button

Long press for 5 seconds is effective. After the reset is successful, the WORK light flashes quickly, and the Modbus device address, RS485 serial port baud rate and check digit are restored to factory settings.



# 3 Modbus

# 3.1 Modbus address table

| Regis            | ter address                  | table (function code: 0x01H, 0x05I                 | H, 0x0FH, 0x0    | 3H, 0x06H, 0x10H)                 |                             |
|------------------|------------------------------|----------------------------------------------------|------------------|-----------------------------------|-----------------------------|
| register address | number<br>of<br>registers    | Register properties                                | register<br>type | Register value range              | Support<br>function<br>code |
| 00017 (0x0010)   | 1                            | DO1 switch output                                  | read/write       | 0x0000 or                         |                             |
| 00018 (0x0011)   | 1                            | DO2 switch output                                  | read/write       | 0xFF00 (0x05                      | 0x01                        |
| 00019 (0x0012)   | 1                            | DO3 switch output                                  | read/write       | function code)<br>0-1 (0x01, 0x0F | 0x05<br>0x0F                |
| 00020 (0x0013)   | 1                            | DO4 switch output                                  | read/write       | function code)                    |                             |
|                  |                              | reserve                                            |                  |                                   |                             |
| 10017 (0x0010)   | 1                            | DI1 switch input                                   | read only        |                                   |                             |
| 10018 (0x0011)   | 1                            | DI2 switch input                                   | read only        |                                   |                             |
| 10019 (0x0012)   | 1                            | DI3 switch input                                   | read only        | 0-1                               | 0x02                        |
| 10020 (0x0013)   | 1                            | DI4 switch input                                   | read only        |                                   |                             |
|                  | 1                            | reserve                                            | -                |                                   |                             |
| 30017 (0x0010)   | 1                            | AI1 input value, unit (uA)                         | read only        |                                   |                             |
| 30018 (0x0011)   | 1                            | AI2 input value, unit (uA)                         | read only        |                                   | 0x03                        |
| 30019 (0x0012)   | 1                            | AI3 input value, unit (uA)                         | read only        | 0-20000                           | 0x04                        |
| 30020 (0x0013)   | 1                            | AI4 input value, unit (uA)                         | read only        |                                   |                             |
|                  |                              | reserve                                            |                  |                                   |                             |
| 40049 (0x0030)   | 1                            | DI1 pulse count value                              | read only        | 0-65535                           |                             |
| 40050 (0x0031)   | 1                            | DI2 pulse count value                              | read only        | 0-65535                           |                             |
| 40051 (0x0032)   | 1                            | DI3 pulse count value                              | read only        | 0-65535                           | 0x03                        |
| 40052 (0x0033)   | 1                            | DI4 pulse count value                              | read only        | 0-65535                           |                             |
|                  |                              | reserve                                            |                  |                                   |                             |
| 40065 (0x0040)   | 1                            | DI1-DI4 pulse count reset                          | just<br>write    | 0x00 - 0x0F                       | 0x06                        |
|                  |                              | reserve                                            |                  |                                   |                             |
| 40078 (0x004D)   | 1                            | device address                                     | read/write       | 1 - 247                           |                             |
| 40079 (0x004E)   | 1                            | baud rate                                          | read/write       | 0 - 7                             |                             |
| 40080 (0x004F)   | 1                            | Check Digit                                        | read/write       | 0 - 2                             |                             |
| 40081(0x0050)    | 1                            | Master mode or slave mode                          | read/write       | 0 - 1                             | 0x03                        |
| 40082 (0x0051)   | 1                            | Switching value automatic reporting                | read/write       | 0 - 2                             | 0x06<br>0x10                |
| 40083 (0x0052)   | 1                            | Switching output time setting (milliseconds)       | read/write       | 300-65535                         | VV                          |
| 40084(0x0053)    | 1                            | Analog range setting                               | read/write       | 0 - 1                             |                             |
| 40085 (0x0054)   | 1                            | Switch value restart output state setting          | read/write       | 0x00 - 0x10                       |                             |
|                  |                              | reserve                                            |                  |                                   |                             |
| 40100 (0x0063)   | twenty<br>two                | Server IP or domain name<br>(domain name in ASCII) | read/write       |                                   | 0x03                        |
| 40122 (0x0079)   | 10122 (0x0079) 1 server port |                                                    | read/write       | 1 - 65535                         | 0x06<br>0x10                |
| 40123 (0x007A)   | 1                            | Protocol type (UDP, TCP)                           | read/write       | 0 - 1                             | 3.2.2.0                     |



| 40124(0x007B)  | twenty<br>two | custom registration package          | read/write |            |      |
|----------------|---------------|--------------------------------------|------------|------------|------|
| 40146(0x0091)  | 1             | Registry Package Mechanism           | read/write | 0 - 4      |      |
| 40147(0x0092)  | twenty<br>two | heartbeat packet                     | read/write |            |      |
| 40169 (0x00A8) | 1             | Heartbeat packet time                | read/write | 0 - 65535  |      |
| 40170 (0x00A9) | 1             | Heartbeat mode                       | read/write | 0 - 1      |      |
| 40171 (0x00AA) | 1             | cloud transmission                   | read/write | 0-1        |      |
| 40172 (0x00AB) | 3             | keep alive connection                | read/write | 0, 2-7200  |      |
| 40173 (0x00AE) | 1             | Ethernet timeout restart             | read/write | 0,60-65535 |      |
| 40174 (0x00AF) | 1             | clear cache                          | read/write | 0 - 1      |      |
| 40175 (0x00B0) | 1             | local port number read/write 0-65535 |            |            |      |
| 40176 (0x00B1) | 1             | IP acquisition method                | read/write | 0-1        |      |
| 40177 (0x00B2) | 11            | local IP address                     | read/write |            |      |
| 40188 (0x00BD) | 11            | subnet mask                          | read/write |            |      |
| 40199 (0x00C8) | 11            | gateway                              | read/write |            |      |
| 40210 (0x00D3) | 11            | Preferred DNS                        | read/write |            |      |
| 40221 (0x00DE) | 11            | Alternate DNS                        | read/write |            |      |
| 40232 (0x00E9) | 11            | MAC value                            | read only  |            | 0x03 |
| 40243 (0x00F4) | 11            | SN code value read o                 |            |            | 0.03 |
|                |               | reserve                              |            |            |      |
| 40300(0x012B)  | 1             | version number                       | read only  |            | 0x03 |

# 3.2 Modbus address table

| Modbus address table |     |  |  |  |
|----------------------|-----|--|--|--|
| 1 (default)          | 1   |  |  |  |
| 2                    | 2   |  |  |  |
| 3                    | 3   |  |  |  |
|                      |     |  |  |  |
| 245                  | 245 |  |  |  |
| 246                  | 246 |  |  |  |
| 247                  | 247 |  |  |  |

# 3.3 RS485 serial port baud rate code value table

| Baud rate code value table |        |  |  |  |
|----------------------------|--------|--|--|--|
| 0                          | 1200   |  |  |  |
| 1                          | 2400   |  |  |  |
| 2                          | 4800   |  |  |  |
| 3 (default)                | 9600   |  |  |  |
| 4                          | 19200  |  |  |  |
| 5                          | 38400  |  |  |  |
| 6                          | 57600  |  |  |  |
| 7                          | 115200 |  |  |  |



# 3.4 RS485 serial port parity code value table

| check digit code value |             |  |  |  |
|------------------------|-------------|--|--|--|
| table                  |             |  |  |  |
| 0 (default) no parity  |             |  |  |  |
| 1                      | even parity |  |  |  |
| 2                      | Odd parity  |  |  |  |

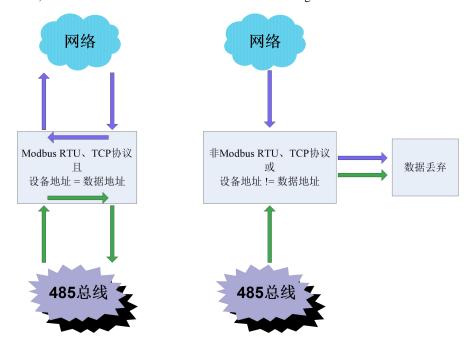
# 3.5 Configure parameters through the host computer

Select the "Parameter Setting" column to read and write parameters. For specific functions, see the product function introduction below.





# **4 Product Functions**


# 4.1 Working mode

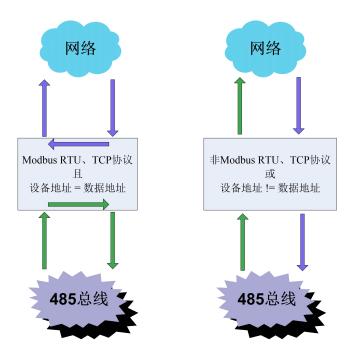
The working mode is divided into master mode and slave mode, configured through Modbus register 40081 (0x0050). When the register value is 0, it is the master mode; when the register value is 1, it is the slave mode, and the default slave mode.

#### 4.1.1 Slave mode

In the slave mode (register value is 0x01), the data sent by the network end or the 485 bus end (transmitter) to the device meets the Modbus RTU and Modbus TCP protocols, and the address in the data is the device address, and the device will respond with the same protocol to send If the data sent by the network end or 485 bus end to the device does not meet the Modbus RTU, Modbus TCP protocol, or meets the Modbus RTU, Modbus TCP protocol but the data address is not the device address, the data at the sending end will be discarded.

In the slave mode, the device can directly connect to the device in the master mode through the 485 bus, so that when the slave is not connected to the Internet, the network can also access the data of the slave through the master.




#### 4.1.2 Host Mode

In the host mode (the register value is 0x00), the data sent by the network terminal or the 485 bus terminal (transmitter) to the device meets the Modbus RTU and Modbus TCP protocols, and the address in the data is the device address, and the device will respond to the sender with the same protocol; If the data sent by the network end or the 485 bus end to the device does not meet the Modbus RTU, Modbus TCP protocol, or meets the Modbus RTU, Modbus TCP protocol but the data address is not the device address,



the data from the 485 bus will be transmitted to the network The data from the network will be transmitted to the 485 bus.

This function of the host mode can realize the device cascading function and the data transmission between the 485 bus and the network.



# 4.2 IO basic functions

# 4.2.1 Digital DO output

# 4.2.1.1 Read switch DO output

Function code: 01, read coil status

Address range: 00017(0x0010)~00020(0x0013)

Explanation: When the device relay is passive output, when the coil is not powered, the NC port and COM port of the relay are normally closed, and the NO port and COM port are normally open, and the value is 0; when the coil is powered on, the phenomenon is opposite, and the relay NC port and COM port are disconnected. Open, the NO port and the COM port are closed, and the value is 1. Query the status of the relay through the command.

example:

Read the 4-way switching output status, assuming the return value is 03, corresponding to the binary digits 0000 0011, the lower four bits represent the switching output status, which are DO4, DO3, DO2, DO1 in sequence.

Modbus RTU protocol to read switch output:

|      | 01                    | 01            | 00 10                | 00 04                | 3C 0C          |
|------|-----------------------|---------------|----------------------|----------------------|----------------|
| send | Device ModBus address | function code | switch start address | Read switch quantity | CRC check code |



|           | 01                    | 01 01    |                       | 03                  | 11 89          |
|-----------|-----------------------|----------|-----------------------|---------------------|----------------|
| take over | Device ModBus address | function | returns the number of | Switch output value | CRC check code |
|           |                       | code     | bytes                 | Switch output value | CKC check code |

#### Modbus TCP protocol to read switch output:

|      | 00 01                             | 00 00  | 00 06   | 01       | 01                   | 00 10                | 00 04    |
|------|-----------------------------------|--------|---------|----------|----------------------|----------------------|----------|
| send | send Transmissi Protocol on ID ID | lowath | Unit ID | function | switch start address | Read switch          |          |
|      |                                   | ID     | length  | Unit ID  | code                 | switch start address | quantity |

|           | 00 01      | 00 00    | 00 04  | 01      | 01       | 01                    | 03                  |
|-----------|------------|----------|--------|---------|----------|-----------------------|---------------------|
| take over | Transmissi | Protocol | lanath | Unit ID | function | returns the number of | Switch output value |
|           | on ID      | ID       | length |         | code     | bytes                 |                     |

#### 4.2.1.2 Control switch DO output

Function code: 05, write single coil status; 0F, write multiple coil status

Address range: 00017(0x0010)~00020(0x0013)

Explanation: The device relay is passively output, the coil is not powered, the NC port of the relay is closed to the COM port, and the NO port is disconnected from the COM port; the coil is powered on, the NC port of the relay is disconnected from the COM port, and the NO port is closed to the COM port. The state of the relay is controlled by commands.

example:

Function code 0x05 writes DO2 switching output, disconnects NC2 and COM2, closes NO2 and COM2, and writes a value of FF 00; closes NC2 and COM2, disconnects NO2 and COM2, and writes a value of 00 00.

#### Modbus RTU protocol write switch output:

|      | 01            | 05            | 00 11          | FF 00       | DC 3F          |  |
|------|---------------|---------------|----------------|-------------|----------------|--|
| send | Device ModBus | function code | switch address | write value | CRC check code |  |
|      | address       | function code | Switch address | write value |                |  |

|           | 01                      | 05            | 00 11          | FF 00       | DC 3F          |  |
|-----------|-------------------------|---------------|----------------|-------------|----------------|--|
| take over | take over Device ModBus |               | switch address | write value | CRC check code |  |
|           | address                 | function code | Switch address | write value | CRC check code |  |

#### Modbus TCP protocol write switch output:

|      | 00 01               | 00 00          | 00 06  | 01      | 05       | 00 11          | FF 00       |
|------|---------------------|----------------|--------|---------|----------|----------------|-------------|
| send | Transmissi<br>on ID | Protocol<br>ID | length | Unit ID | function | switch address | write value |

|                    | 00 01      | 00 00    | 00 06  | 01      | 05       | 00 11          | FF 00       |
|--------------------|------------|----------|--------|---------|----------|----------------|-------------|
| take over Transmis | Transmissi | Protocol | lanath | Unit ID | function | switch address | write value |
|                    | on ID      | ID       | length |         | code     |                |             |

Function code 0x0F write DO2, DO3 switch output, make NC2, COM2 open, NO2, COM2 close; make NC3, COM3 open, NO3, COM3 close. The written value should be 0x03, corresponding to the binary bit 0000 0011

Modbus RTU protocol write switch output:



|      | 01            | 0F 00 11      |                | 00 02 01     |       | 03    | 62 95     |
|------|---------------|---------------|----------------|--------------|-------|-------|-----------|
| send | Device ModBus | £             |                | Write switch | Dadas | write | CRC check |
|      | address       | function code | switch address | quantity     | Bytes | value | code      |

|           | 01            | 0F            | 00 11          | 00 02       | 84 0F          |
|-----------|---------------|---------------|----------------|-------------|----------------|
| take over | Device ModBus | function code | switch address | weito voluo | CRC check code |
|           | address       |               | Switch address | write value | CRC check code |

#### Modbus TCP protocol write switch output:

|      | 00 01      | 00 00    | 00 08    | 01      | 0F       | 00 11    | 00 02        | 01     | 03    |
|------|------------|----------|----------|---------|----------|----------|--------------|--------|-------|
| send | Transmissi | Protocol | lanath   | Unit ID | function | switch   | Write switch | Drytag | write |
|      | on ID ID   | length   | Ollit ID | code    | address  | quantity | Bytes        | value  |       |

| take | 00 01     | 00 00    | 00 06  | 01      | 0F       | 00 11           | 00 02                  |  |
|------|-----------|----------|--------|---------|----------|-----------------|------------------------|--|
| over | Transmiss | Protocol | lanath | Unit ID | function | gyvitah addraga | Write switch quantity  |  |
|      | ion ID    | ID       | length | Unit iD | code     | switch address  | write switch qualitity |  |

# 4.2.2 Read digital DI input

Function code: 02, read (switch value) input state Address range: 10017(0x0010)~10020(0x0013)

Note: The device defaults to dry contact input. When DI and COM are short-circuited, the read value should be 1; when DI and COM are not short-circuited, the read value should be 0.

example:

To read the 4-way switch input value, the DI input terminals DI1 and COM1 are short-circuited, DI2 and COM2 are not short-circuited, DI3 and COM3 are short-circuited, and DI4 and COM4 are not short-circuited. The read digital input value is 0x05, corresponding to the binary bit 0000 0101, and the lower four bits represent the digital input value, which are DI4, DI3, DI2, and DI1 in turn.

#### Modbus RTU protocol to read digital input:

|      | 01                       | 02            | 00 10                | 00 04                | 78 0C          |
|------|--------------------------|---------------|----------------------|----------------------|----------------|
| send | Device ModBus<br>address | function code | switch start address | Read switch quantity | CRC check code |

|           | 01            | 02            | 01                    | 05                       | 61 8B          |  |
|-----------|---------------|---------------|-----------------------|--------------------------|----------------|--|
| take over | Device ModBus | function code | returns the number of | Switch value input value | CRC check code |  |
|           | address       |               | bytes                 | Switch value input value | CRC check code |  |

#### Modbus TCP protocol to read digital input:

|      | *             | _        | •      |         |          |                      |             |
|------|---------------|----------|--------|---------|----------|----------------------|-------------|
|      | 00 01         | 00 00    | 00 06  | 01      | 02       | 00 10                | 00 04       |
| send | Transmissi Pr | Protocol | langth | Unit ID | function | switch start address | Read switch |
|      | on ID         | ID       | length | Unit ID | code     | Switch start address | quantity    |



|           | 00 01      | 00 00    | 00 04  | 01      | 02       | 01                    | 05                 |
|-----------|------------|----------|--------|---------|----------|-----------------------|--------------------|
| take over | Transmissi | Protocol | length | Unit ID | function | returns the number of | Switch value input |
|           | on ID      | ID       |        |         | code     | bytes                 | value              |

# 4.2.3 Read analog AI input

Function code: 03, read holding register; 04, read input register

Address range: 30017(0x0010)~30020(0x0013) Note: The unit of differential analog input value is uA

example:

Function code 0x03, read A11 input, assuming AI1 input is 9946uA, the corresponding value should be 0x0x26DA

Modbus RTU protocol to read differential analog inputs:

|      | 1                        | <i>U</i> 1                            |       |                 |                |
|------|--------------------------|---------------------------------------|-------|-----------------|----------------|
|      | 01                       | 03                                    | 00 10 | 00 01           | 85 CF          |
| send | Device ModBus<br>address | function code Analog starting address |       | Number of reads | CRC check code |
|      |                          |                                       |       |                 |                |
| 1    |                          |                                       |       |                 |                |

|           | 01            | 03            | 02                    | 26DA                      | 23 BF          |
|-----------|---------------|---------------|-----------------------|---------------------------|----------------|
| take over | Device ModBus | function and  | returns the number of | Differential analog input | CRC check code |
|           | address       | function code | bytes                 | value                     | CRC check code |

#### Modbus TCP protocol to read differential analog input:

|      | 00 01      | 00 00    | 00 06  | 01      | 03       | 00 10                   | 00 01           |
|------|------------|----------|--------|---------|----------|-------------------------|-----------------|
| send | Transmissi | Protocol | lanath | Unit ID | function | Analog starting address | Number of reads |
|      | on ID      | ID       | length | Unit ID | code     | Analog starting address | Number of reads |

|           | 00 01      | 00 00    | 00 05  | 01      | 03       | 02                    | 26DA                |
|-----------|------------|----------|--------|---------|----------|-----------------------|---------------------|
| take over | Transmissi | Protocol | length | Unit ID | function | returns the number of | Differential analog |
|           | on ID      | ID       |        |         | code     | bytes                 | input value         |

Function code 0x04, read AI1 input, assuming AI1 input is 9946uA, the corresponding value should be 0x0x26DA Modbus RTU protocol to read differential analog inputs:

|      | 01                       | 04            | 00 10                   | 00 01           | 30 0F          |
|------|--------------------------|---------------|-------------------------|-----------------|----------------|
| send | Device ModBus<br>address | function code | Analog starting address | Number of reads | CRC check code |

|           | 01            | 04            | 02                    | 26DA                      | 22 CB          |
|-----------|---------------|---------------|-----------------------|---------------------------|----------------|
| take over | Device ModBus | function code | returns the number of | Differential analog input | CRC check code |
|           | address       | function code | bytes                 | value                     | CKC check code |

#### Modbus TCP protocol to read differential analog input:

|      |            |          | <i>U</i> 1 |         |          |                         |                 |
|------|------------|----------|------------|---------|----------|-------------------------|-----------------|
|      | 00 01      | 00 00    | 00 06      | 01      | 04       | 00 10                   | 00 01           |
| send | Transmissi | Protocol | length     | Unit ID | function | Analog starting address | Number of reads |
|      | on ID      | ID       | icligui    |         | code     | Analog starting address | Number of reads |



| take over | 00 01      | 00 00    | 00 05  | 01      | 04       | 02                    | 26DA                |
|-----------|------------|----------|--------|---------|----------|-----------------------|---------------------|
|           | Transmissi | Protocol | length | Unit ID | function | returns the number of | Differential analog |
|           | on ID      | ID       |        |         | code     | bytes                 | input value         |

# 4.2.4 Analog AI range setting

When the register 0x40084 (0x0053) value is 0, the differential analog input range is 0 -- 20mA;

When the register 0x40084 (0x0053) value is 1, the differential analog input range is 4 -- 20mA;

# 4.3 IO Features

#### 4.3.1 Pulse count and count reset

The pulse count will not be saved after power off, and the pulse level maintenance time must be greater than 10ms to be valid. The switch value input changes from the open state to the closed state and maintains the closed state for more than 10ms, and then changes to the open state to complete a pulse count.

# 4.3.1.1 Read pulse count value

Function code: 03, read holding register

Address range: 40049 (0x0030)~40052 (0x0033)

Description: The maximum value of pulse count is 65535

DI1 has currently detected 16 pulses, DI2 has currently detected 3 pulses, read the count values of DI1 and DI2 digital inputs,

Modbus RTU protocol read pulse count value:

|      | 01            | 03            | 00 30           | 00 02           | C4 04          |
|------|---------------|---------------|-----------------|-----------------|----------------|
| send | Device ModBus | function and  | initial address | Number of reads | CRC check code |
|      | address       | function code | initial address | Number of reads |                |

|           | 01                    | 03            | 04          | 00 10           | 00 03           | BB F7          |
|-----------|-----------------------|---------------|-------------|-----------------|-----------------|----------------|
| take over |                       |               | returns the |                 |                 |                |
|           | Device ModBus address | function code | number of   | DI1 count value | DI2 count value | CRC check code |
|           |                       |               | bytes       |                 |                 |                |

## Modbus TCP protocol read pulse count value:

|      | 00 01      | 00 00    | 00 06  | 01      | 03       | 00 30           | 00 02           |
|------|------------|----------|--------|---------|----------|-----------------|-----------------|
| send | Transmissi | Protocol | lowath | Unit ID | function | initial address | Number of reads |
|      | on ID      | ID       | length | Unit ID | code     | initial address | Number of reads |

|           | 00 01               | 00 00       | 00 07  | 01      | 03               | 04                          | 00 10           | 00 03           |
|-----------|---------------------|-------------|--------|---------|------------------|-----------------------------|-----------------|-----------------|
| take over | Transmissio<br>n ID | Protocol ID | length | Unit ID | function<br>code | returns the number of bytes | DI1 count value | DI2 count value |



#### 4.3.1.2 Clear pulse count value

Function code: 06, write holding register

Address range: 40065 (0x0040)

Explanation: The lower four bits of the register value represent the counting of DI4, DI3, DI2, and DI1 respectively. Writing "1" means that the counting is cleared, and the pulse counting is restarted.

example:

Clear the pulse count values of DI2 and DI4, and retain the pulse count values of DI1 and DI3. The written value should be 0x0a, the corresponding binary value is  $0000\ 1010$ ,

Modbus RTU protocol clear pulse count value :

|      | 01            | 06            | 00 40   | 00 0a       | 08 19           |
|------|---------------|---------------|---------|-------------|-----------------|
| send | Device ModBus | function code | address | write value | CRC check code  |
|      | address       | function code | address | write value | CRC clieck code |

| talra ayını | 01                    | 06            | 00 40   | 00 0a       | 08 19          |
|-------------|-----------------------|---------------|---------|-------------|----------------|
| take over   | Device ModBus address | function code | address | write value | CRC check code |

#### Modbus TCP protocol clear pulse count value:

|      | 00 01        | 00 00    | 00 06  | 01      | 06       | 00 40   | 00 0a          |
|------|--------------|----------|--------|---------|----------|---------|----------------|
| send | Transmission | Protocol | 141-   | Unit ID | function | address | versita verbua |
|      | ID           | ID       | length | Unit ID | code     | address | write value    |

|           | 00 01       | 00 00        | 00 06  | 01      | 06       | 00 40   | 00 0a       |
|-----------|-------------|--------------|--------|---------|----------|---------|-------------|
| take over | Transmissio | Protocol ID  | length | Unit ID | function | address | write value |
|           | n ID        | 1 TOTOCOL ID | lengui | Oint ID | code     | address | write value |

#### 4.3.2 Automatic reporting of digital input DI

The switch value input automatic reporting function is to transmit the changed value when the switch value changes. You can choose to transmit via RS485 or GPRS, or you can turn off the automatic reporting function.

The Modbus register corresponding to the switch value automatic reporting setting is 40082 (0x0051), and the value corresponds to the function:

Turn off the switch value automatic reporting function

The switching value is automatically reported and transmitted through RS485

The switching value is automatically reported and transmitted through the GPRS network

The upload protocol for switching value changes is listed in the table below, where the frame headers 0xAA and 0xBB are fixed, and the value ranges of DI1, DI2, DI3, and DI4 are 0x00, 0x01, and 0xFF.

0x00 means that the digital input is disconnected,

0x01 means the switch input is closed,

0xff means that the digital input has not changed,

The values of DI1, DI2, DI3, and DI4 in the table represent that the state of DI1 and DI2 is updated to be open, the state of DI3 is updated to be closed, and the state of DI4 has not changed. The last two bytes are modbus CRC16 calculation value.

| frame header | DI1  | DI2  | DI3  | DI4  | Modbus CRC |
|--------------|------|------|------|------|------------|
| 0xAA 0xBB    | 0x00 | 0x00 | 0x01 | 0xff | 0xBD 0xDA  |



### 4.3.3 Time setting of digital output DO

Switching value pulse output time setting is to set the switching value output time (relay NO, COM closing time), the corresponding Modbus register is 40083 (0x0052), the value range is 300-65535ms, if the value is lower than 300ms, the default switching value output Closed is the holding state, that is, the switching value output is kept after it is closed. If it is set to 300ms and above, such as 500ms, after sending the switching value output closing command, the switching value will be closed for 500ms, and then it will be automatically disconnected after 500ms.

# 4.3.4 Digital DO restart output state setting

Whether the device is powered off and restarted to maintain the state before power failure or restart to maintain a specific output state setting, this function is only valid when the device switch output time setting register value is less than 300ms.

The Modbus register corresponding to the switch restart output state setting is 40085 (0x0054), and its value range is 0x00-0x10. When the value of this register is 0x10, the last switching output state will be maintained after power off and restarting; when the value of this register is 0x00-0x0F, the lower four bits determine the switching output state of the device restart, bit4 corresponds to DO4, and bit3 corresponds to DO3, bit2 corresponds to DO2, and bit1 corresponds to DO1. For example, when power is turned on, DO4 and DO2 are closed (relay NO and COM are closed) DO3 and DO1 are disconnected (relay NO and COM are disconnected), and the corresponding register value is 0000 1010, namely 0xa0, "1" is closed state, "0" is open state.

# 4.4 Network related functions

# 4.4.1 Server IP or domain name, port, TCP or UDP settings (Socket)

The server IP or domain name is saved by 22 modbus registers. The first register is used to store the ASCII code length corresponding to the IP or domain name, and the remaining registers are used to store the ASCII code value corresponding to the IP or domain name. For example, the IP is 116.62.42.192, the port is 31687, a total of 13 characters, that is, the length is 0x000D, and the ASCII code value corresponding to the IP is 31 31 36 2E 36 32 2E 34 32 2E 31 39 32, the corresponding modbus register storage value is as follows surface. If it is a domain name, the corresponding domain name is also converted into the hexadecimal corresponding to ASCII for storage. (Note: The maximum length of the domain name does not exceed 40 ASCII codes)

| 40101(0x0063) | 40101(0x0064) 40121(0x0078)            |
|---------------|----------------------------------------|
| length        | IP or domain name value                |
| 00 0D         | 31 31 36 2E 36 32 2E 34 32 2E 31 39 32 |

Port 31687, corresponding to hexadecimal 7BC7; the protocol type (TCP, UDP) is stored in the protocol register, the value 0x0001 corresponds to the TCP protocol, and the value 0x0000 corresponds to the UDP protocol. That is, when the IP is 116.62.42.192, the port is 31687, and the TCP protocol, the unused IP or domain name registers can be filled with "0" or not. If you need to use the function code "0x10" to write the IP, domain name, and port at one time, protocol type, then the unused registers must be filled with values in order to continuously write modbus registers, the corresponding register values are as follows:

| 40100(0x0063) | 40101(0x0064) 40121(0x0078)               | 40122 (0x0079) | 40123(0x007A)  |  |
|---------------|-------------------------------------------|----------------|----------------|--|
| IP or domain  | IP or domain name value                   | gamzan nant    | TCD musts as 1 |  |
| name length   | ir or domain name value                   | server port    | TCP protocol   |  |
|               | 31 31 36 2E 36 32 2E 34 32 2E 31 39 32 00 |                |                |  |
| 00 0D         | 00 00 00 00 00 00 00 00 00 00 00 00 00    | 7B C7          | 00 01          |  |
|               | 00 00 00 00 00 00 00 00 00 00 00 00 00    |                |                |  |

Since the length of the IP or domain name register is greater than the length of the IP or domain name value, the length of the IP



or domain name needs to be considered when writing the IP register, that is, how many registers need to be occupied. If the above IP is written into the modbus register:

#### Modbus RTU protocol write Socket register:

| 1    | 01                          | 10                   | 00 63   | 00 18              | 30    | 00 0D 31 31 36 2E 36 32 2E 34 32 2E 31 39 32 00 00 00 00 00 00 00 00 00 00 00 00 00 | 7B F0                |
|------|-----------------------------|----------------------|---------|--------------------|-------|-------------------------------------------------------------------------------------|----------------------|
| send | Device<br>ModBus<br>address | functi<br>on<br>code | address | register<br>length | Bytes | write value                                                                         | CRC<br>check<br>code |

| take | 01                    | 10            | 00 63   | 00 18           | 30 1D          |
|------|-----------------------|---------------|---------|-----------------|----------------|
| over | Device ModBus address | function code | address | register length | CRC check code |

#### Modbus TCP protocol write Socket register:

| sen | 00 01                   | 00 00           | 00 37  | 01         | 10                | 00<br>63    | 00 18              | 30        | 00 0D 31 31 36 2E 36 32 2E 34 32 2E 31 39 32 00 00 00 00 00 00 00 00 00 00 00 00 00 |
|-----|-------------------------|-----------------|--------|------------|-------------------|-------------|--------------------|-----------|-------------------------------------------------------------------------------------|
| d   | Trans<br>missio<br>n ID | Protoc<br>ol ID | length | Unit<br>ID | functio<br>n code | addr<br>ess | register<br>length | Byte<br>s | write value                                                                         |

| take | 00 01       | 00 00       | 00 06  | 01      | 10            | 00 63   | 00 18           |
|------|-------------|-------------|--------|---------|---------------|---------|-----------------|
| over | Transmissio | Protocol ID | length | Unit ID | function code | address | register length |
| Over | n ID        | TIOLOCOTID  | lengui | Cint 1D | Tunction code | address | register length |

# 4.4.2 Custom registration package

The custom registration package can be ASCII code or hex, the length of hex cannot be greater than 20 bytes, and the length of ASCII code cannot be greater than 40 bytes. The first register of the custom registration package is used to store the type of the registration package. The value 0x0000 indicates that the registration package is in hex format, and the value 0x0001 indicates that the registration package is in ASCII format. When the value is 0x0001, the registration package value is ABCDEFGHIJ, and the corresponding ASCII code value Register the package value as shown in the following table. The second register of the custom registration package is used to store the length of the registration package value. The length of the registration package value is 10, corresponding to 0x0A in hexadecimal. Like IP registers, unused register packet value registers can be filled with "0" or not filled.

| 40124(0x007B) | 40125(0x007C) | 40126(0x007D) 40145(0x0090)                                                | 40146(0x0091)                 |
|---------------|---------------|----------------------------------------------------------------------------|-------------------------------|
| Types of      | length        | Registry package value                                                     | Registry Package<br>Mechanism |
| 00 01         | 00 0A         | 41 42 43 44 45 46 47 48 49 4A<br>00 00 00 00 00 00 00 00 00 00<br>00 00 00 | 00 01                         |

The registration package mechanism has 5 modes:

| Register package mechanism | Corresponding function description |
|----------------------------|------------------------------------|
|                            | 1 5                                |



| register value (0x0091) |                                                                                 |
|-------------------------|---------------------------------------------------------------------------------|
| 00 00                   | Close the registration package mechanism                                        |
| 00 01                   | Add MAC/IMEI as registration packet data before the data sent to the server in  |
| 00 01                   | each packet                                                                     |
| 00 02                   | Add custom registration package data before the data sent to the server in each |
| 00 02                   | package                                                                         |
| 00 03                   | Send a MAC/IMEI registration packet only when connecting to the server for the  |
| 00 03                   | first time                                                                      |
| 00.04                   | Only send a user-defined registration packet when connecting to the server for  |
| 00 04                   | the first time                                                                  |

#### Modbus RTU protocol write register package register:

|   |         |        |        |         |          |                                        | 00 01 00 0A 41 42 43 44 45 46 47 48 49 4A 00 |       |
|---|---------|--------|--------|---------|----------|----------------------------------------|----------------------------------------------|-------|
|   | 01      | 10     | 00 7B  | 00 17   | 2E       | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00 F4                                        |       |
|   | 1       |        |        |         |          |                                        | 00 00 00 00 00 00 00 00 00 00 00 00 00       |       |
| 5 | send    | Device | functi | address | register | Bytes                                  |                                              | CRC   |
|   |         | ModBus | on     |         |          |                                        | write value                                  | check |
|   | address | code   |        | length  |          |                                        | code                                         |       |

| take | 01                    | 10            | 00 7B   | 00 17           | F0 1E          |
|------|-----------------------|---------------|---------|-----------------|----------------|
| over | Device ModBus address | function code | address | register length | CRC check code |

#### Modbus TCP protocol write register package register:

| sen | 00 01                   | 00 00           | 00 33  | 01         | 10                   | 00<br>7B    | 00 17              | 2E        | 00 01 00 0A 41 42 43 44 45 46 47 48 49 4A<br>00 00 00 00 00 00 00 00 00 00 00 00 00 |
|-----|-------------------------|-----------------|--------|------------|----------------------|-------------|--------------------|-----------|-------------------------------------------------------------------------------------|
| d   | Trans<br>missio<br>n ID | Protoc<br>ol ID | length | Unit<br>ID | functi<br>on<br>code | addr<br>ess | register<br>length | Byte<br>s | write value                                                                         |

| take | 00 01      | 00 00    | 00 06  | 01       | 10       | 00 7B   | 00 17           |
|------|------------|----------|--------|----------|----------|---------|-----------------|
| over | Transmissi | Protocol | lanath | Unit ID  | function | address | register length |
| Ovei | on ID      | ID       | length | Ollit ID | code     | audress | register length |

#### 4.4.3 Heartbeat packet

The heartbeat packet can be ASCII code or hex, the length of hex cannot be greater than 20 bytes, and the length of ASCII code cannot be greater than 40 bytes. The first register of the heartbeat packet is used to store the data type of the heartbeat packet. The value 0x0000 means that the heartbeat packet is in hex format, and the value 0x0001 means that the heartbeat packet is in ASCII format. When the value is 0x0000, the heartbeat packet value is 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09. The second register of the heartbeat packet is used to store the length of the heartbeat packet value. The length of the heartbeat packet value is 10, corresponding to decimal 0x0A. Like the custom registration package register, the unused heartbeat package value register can be filled with "0" or not filled.

| 40147(0x0092) | 40148(0x0093) | 40149(0x0094) 40168(0x00A7) |
|---------------|---------------|-----------------------------|
|---------------|---------------|-----------------------------|



| Types of | length | Registry package value        |
|----------|--------|-------------------------------|
|          |        | 00 01 02 03 04 05 06 07 08 09 |
| 00.00    | 00.04  | 00 00 00 00 00 00 00 00 00 00 |
| 00 00    | 00 0A  | 00 00 00 00 00 00 00 00 00 00 |
|          |        | 00 00 00 00 00 00 00 00 00 00 |

# Modbus RTU protocol write register package register:

| send | 01      | 10 00 92 |         | 00 16              | 2C    | 00 00 00 0A 00 01 02 03 04 05 06 07 08 09 00<br>00 00 00 00 00 00 00 00 00 00 00 00 | 52 9E |
|------|---------|----------|---------|--------------------|-------|-------------------------------------------------------------------------------------|-------|
| send | Device  | functi   | address | register<br>length | Bytes |                                                                                     | CRC   |
|      | ModBus  | on       |         |                    |       | write value                                                                         | check |
|      | address | code     |         |                    |       |                                                                                     | code  |

| take | 01                    | 10            | 00 92   | 00 16           | E0 2A          |
|------|-----------------------|---------------|---------|-----------------|----------------|
| over | Device ModBus address | function code | address | register length | CRC check code |

#### Modbus TCP protocol write register package register:

| sen | 00 01                   | 00 00           | 00 33  | 01         | 10                   | 00<br>92    | 00 16              | 2C        | 00 00 00 0A 00 01 02 03 04 05 06 07 08 09 00 00<br>00 00 00 00 00 00 00 00 00 00 00 |
|-----|-------------------------|-----------------|--------|------------|----------------------|-------------|--------------------|-----------|-------------------------------------------------------------------------------------|
| d   | Trans<br>missio<br>n ID | Protoc<br>ol ID | length | Unit<br>ID | functi<br>on<br>code | addr<br>ess | register<br>length | Byte<br>s | write value                                                                         |

| take | 00 01        | 00 00       | 00 06  | 01      | 10       | 00 92   | 00 16           |
|------|--------------|-------------|--------|---------|----------|---------|-----------------|
|      | Transmission | Protocol ID | length | Unit ID | function | address | register length |
| over | ID           | Protocol ID | lengui | Omtid   | code     | audress | register tengui |

# 4.4.4 Heartbeat packet time

The heartbeat packet time setting range is 0-65535 seconds. When the heartbeat packet time is set to 0, the heartbeat packet is turned off. Set the heartbeat packet duration to 5s as follows.

# Modbus RTU protocol write heartbeat packet time register:

|      | 01            | 06            | 00 A8   | 00 05       | C8 29          |  |
|------|---------------|---------------|---------|-------------|----------------|--|
| send | Device ModBus | function code | address | write value | CRC check code |  |
|      | address       | function code | address | write value |                |  |

| talra avian | 01                    | 06            | 00 A8   | 00 05       | C8 29          |
|-------------|-----------------------|---------------|---------|-------------|----------------|
| take over   | Device ModBus address | function code | address | write value | CRC check code |

# Modbus TCP protocol Modbus RTU protocol write heartbeat packet time register:

| 1    | 00 01        | 00 00    | 00 06  | 01      | 06       | 00 A8   | 00 05       |
|------|--------------|----------|--------|---------|----------|---------|-------------|
| send | Transmission | Protocol | length | Unit ID | function | address | write value |



|  |  | ID | ID |  |  | code |  |  |
|--|--|----|----|--|--|------|--|--|
|--|--|----|----|--|--|------|--|--|

|           | 00 01       | 00 00       | 00 06  | 01       | 06       | 00 A8   | 00 05       |
|-----------|-------------|-------------|--------|----------|----------|---------|-------------|
| take over | Transmissio | Protocol ID | lanath | Unit ID  | function | address | write value |
|           | n ID        | Protocol ID | length | Ollit ID | code     | address | write value |

## 4.4.5 Heartbeat packet mode

The heartbeat packet mode is divided into serial port heartbeat packet and network heartbeat packet (the default is network heartbeat packet). When writing 0 to this register, it is a network heartbeat packet, and when writing 1, it is a serial port heartbeat packet.

Modbus RTU protocol write heartbeat packet mode register:

| send | 01                       | 06            | 00 A9   | 00 01       | 98 2A          |
|------|--------------------------|---------------|---------|-------------|----------------|
|      | Device ModBus<br>address | function code | address | write value | CRC check code |

| talsa ayar | 01                    | 06            | 00 A9   | 00 01       | 98 2A          |
|------------|-----------------------|---------------|---------|-------------|----------------|
| take over  | Device ModBus address | function code | address | write value | CRC check code |

#### Modbus TCP protocol write heartbeat packet mode register:

|      | 00 01        | 00 00    | 00 06  | 01      | 06       | 00 A9   | 00 00       |
|------|--------------|----------|--------|---------|----------|---------|-------------|
| send | Transmission | Protocol | length | Unit ID | function | address | write value |
|      | ID           | ID       | length | Unit ID | code     | address | write value |

|           | 00 01       | 00 00       | 00 06  | 01      | 06       | 00 A9   | 00 00       |
|-----------|-------------|-------------|--------|---------|----------|---------|-------------|
| take over | Transmissio | Protocol ID | length | Unit ID | function | address | write value |
|           | n ID        |             |        |         | code     |         |             |

# 4.4.6 Local WAN port IP parameter setting

Local IP acquisition methods are divided into static IP acquisition and dynamic IP acquisition (DHCP), and the related registers are 34 registers from 0XB1 to 0XD2. When the value in the first register (0XB1) is 1, it is the static IP mode, and when it is 0, it is the dynamic acquisition mode. A total of 11 registers from 0XB2 to 0XBC store the local ip address, among which 0XB2 stores the length of the ip address, and 0XB3 to 0XBC store the ASCII code value of the IP address. A total of 11 registers from 0XBD to 0XC7 store the subnet mask information, among which 0XBD stores the length of the subnet mask address, and 0XBE to 0XC7 store the ASCII code value of the subnet mask address. A total of 11 registers from 0XC8 to 0XD2 store the gateway address, among which 0XC8 stores the length of the gateway address, and 0XC9 to 0XD2 store the ASCII code value of the gateway address.

You can use the 10 function code to write in one time and appeal the parameter information. Note that it is the same as the server IP setting, and the unfilled registers are filled with 0. The following command indicates that it is set to static IP, the local IP address is 192.168.4.101, the subnet mask is 255.255.255.0, and the gateway is 192.168.4.1. Note that the corresponding ASCII code value should be written when writing, and the Convert to hexadecimal.

# Modbus RTU protocol configuration WAN port parameters :

|      | 1  |    | 8     | 1 .   | 1  |                                                       |       |
|------|----|----|-------|-------|----|-------------------------------------------------------|-------|
|      |    |    |       |       |    | 00 01 00 0D 31 39 32 2E 31 36 38 2E 34 2E 31 30 31 00 |       |
| send | 01 | 10 | 00 B1 | 00 22 | 44 | 00 00 00 00 00 00 00 0D 32 35 35 2E 32 35 35 2E 32 35 | 31 16 |
|      |    |    |       |       |    | 35 2E 30 00 00 00 00 00 00 00 00 0B 31 39 32 2E 31 36 |       |



|         |        |         |          |       | 38 2E 34 2E 31 00 00 00 00 00 00 00 00 00 |       |
|---------|--------|---------|----------|-------|-------------------------------------------|-------|
| Device  | functi |         |          |       |                                           | CRC   |
| ModBus  | on     | address | register | Bytes | write value                               | check |
| address | code   |         | length   |       |                                           | code  |

| take | 01                    | 10            | 00 B1   | 00 22           | 10 37          |
|------|-----------------------|---------------|---------|-----------------|----------------|
| over | Device ModBus address | function code | address | register length | CRC check code |

#### Modbus TCP protocol writes WAN port parameters:

| sen<br>d | 00 01                   | 00 00           | 00 4B  | 01         | 10                | 00<br>B1    | 00 22              | 44        | 00 01 00 0D 31 39 32 2E 31 36 38 2E 34 2E 31 30 31 00 00 00 00 00 00 00 00 0D 32 35 35 2E 31 36 38 2E 34 2E 31 00 00 00 00 00 00 00 00 00 00 00 00 00 |
|----------|-------------------------|-----------------|--------|------------|-------------------|-------------|--------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Trans<br>missio<br>n ID | Protoc<br>ol ID | length | Unit<br>ID | functio<br>n code | addr<br>ess | register<br>length | Byte<br>s | write value                                                                                                                                                                                           |

| take | 00 01      | 00 00    | 00 06  | 01       | 10            | 00 B1   | 00 22           |
|------|------------|----------|--------|----------|---------------|---------|-----------------|
| over | Transmissi | Protocol | lonath | Unit ID  | function code | address | ragistar langth |
| Over | on ID      | ID       | length | Ollit ID | Tunction code | address | register length |

# 4.4.7 DNS settings

There are 22 registers starting from 0XD3 to 0XDE, which store DNS information. DNS addresses are divided into preferred DNS and standby DNS. Register 0xD3 stores the address length of the preferred DNS, and registers 0xD4 to 0xDD store the ASCII code value of the preferred DNS address. Register 0XDE stores the length of the standby DNS address, and 0XDE to 0XE8 store the ASCII code value of the standby DNS address.

You can use the 10 function code to configure the preferred DNS and standby DNS at one time. The following table shows that the preferred and standby DNS are 61.139.2.69 and 192.168.4.1 respectively.

Modbus RTU protocol configuration preferred and alternate DNS:

| aan d | 01                          | 10                   | 00 D3   | 00 16              | 5 2C  | 00 0B 36 31 2E 31 33 39 2E 32 2E 36 39 00 00 00 00 00 00 00 00 00 00 00 00 00 | D9 F2                |
|-------|-----------------------------|----------------------|---------|--------------------|-------|-------------------------------------------------------------------------------|----------------------|
| send  | Device<br>ModBus<br>address | functi<br>on<br>code | address | register<br>length | Bytes | write value                                                                   | CRC<br>check<br>code |

| take | 01                    | 10            | 00 D3   | 00 16           | B0 3E          |
|------|-----------------------|---------------|---------|-----------------|----------------|
| over | Device ModBus address | function code | address | register length | CRC check code |

#### Modbus TCP protocol configuration preferred and alternate DNS:

| se | 00.01 | 00.00 | 00.22 | 01 | 10 | 00 | 00.16 | 20 | 00 0B 36 31 2E 31 33 39 2E 32 2E 36 39 00 00 00 |
|----|-------|-------|-------|----|----|----|-------|----|-------------------------------------------------|
| nd | 00 01 | 00 00 | 00 33 | 01 | 10 | D3 | 00 16 | 2C | 00 00 00 00 00 00 00 0B 31 39 32 2E 31 36 38 2E |



|                         |                 |        |            |                  |             |                    |       | 34 2E 31 00 00 00 00 00 00 000 |
|-------------------------|-----------------|--------|------------|------------------|-------------|--------------------|-------|--------------------------------|
| Trans<br>missio<br>n ID | Protoc<br>ol ID | length | Unit<br>ID | function<br>code | add<br>ress | register<br>length | Bytes | write value                    |

| take | 00 01      | 00 00    | 00 06  | 01       | 10            | 00 D3   | 00 16           |
|------|------------|----------|--------|----------|---------------|---------|-----------------|
| over | Transmissi | Protocol | length | Unit ID  | function code | address | register length |
| Over | on ID      | ID       | length | Clift ID | Tunction code | address | register length |

#### 4.4.8 Ebyte cloud transparent transmission

Ebyte cloud transparent transmission function can be turned on or off. The design register corresponding to this function is 40169 (0x00AA), and supports 0x0003, 0x0006, 0x0010 function codes:

When the value of this register is 0x0000, the cloud transparent transmission function is turned off;

When the value of this register is 0x0001, the cloud transparent transmission function is enabled;

The factory default is to close the cloud transparent transmission state.

#### 4.4.9 Clear cache

Register 0xAF can set whether to clear the cache in the network SOKET, support 0x0003, 0x0006, 0x0010 function codes:

When the value of this register is 0x0000, the clear cache function is enabled;

When the value of this register is 0x0001, the function of clearing the cache is disabled;

## 4.4.10 Keep Alive Connection

Register 40170 (0x00AB) is the keep-alive connection register, which needs to be used with 40171 (0x00AC) and 40172 (0x00AD).

The 40170 (0x00AB) register indicates the number of seconds after the TCP connection has no data message transmission to start the detection message. When the value of this register is 0, it means that this function is turned off. When it is  $2\sim7200$ , it means that this function is turned on, and the latter two registers will take effect parameters.

The 40171 (0x00AC) register indicates the time interval between the previous detection message and the next detection message, and its value is  $2\sim7200$ , in seconds

40172 (0x00AD) register indicates the maximum detection failure times, when sniffing this number, the TCP connection will be disconnected, its value is  $2\sim255$ , unit: times

#### 4.4.11 Timeout restart

This register 40173 (0x00AE) is used to set how long the Ethernet physical layer module in the RTU restarts after there is no data in the network. The range is 0, 60-65535 seconds. When it is set to 0, it means that this function is turned off. Set to When the parameters in 60-65535 are used, this parameter takes effect.

# 4.4.12 SOCKET local port setting

The register 40175 (0x00B0) is used to set the SOCKET local port number, and supports 0x0003, 0x0006, and 0x0010 function codes. When the value is 0, it means that the random port number is used, and 1-65535 means that it is set to the corresponding port number.



#### 4.4.13 MAC Read

The starting address for reading the MAC register is 40232 (0x00E9), and the total length of the registers is 11. Among them, the first register is the length of the MAC, and the second register to the eleventh register store the MAC value. For example, MAC: B2FAEAF2C427, the corresponding register value is as follows, in the register, the IMEI value exists in hexadecimal ASCII value.

| 40171 (0x00AA) | 40172 (0x00AB)40181 (0x00B4)                                |
|----------------|-------------------------------------------------------------|
| MAC length     | MAC value                                                   |
| 00 0C          | 42 32 46 41 45 41 46 32 43 34 32 37 00 00 00 00 00 00 00 00 |

#### 4.4.14 SN read

The starting address for reading the SN register is 40243 (0x00F4), and the total length of the registers is 11. Among them, the first register is the length of the SN, and the second register to the eleventh register store the SN value. For example, SN: 190521135939C140, the corresponding register value is as follows. In the register, the SN value exists in hexadecimal ASCII value.

| 40182 (0x00B5) | 40183 (0x00B6)40192 (0x00BF)                                |
|----------------|-------------------------------------------------------------|
| SN length      | SN value                                                    |
| 00 10          | 31 39 30 35 32 31 31 33 35 39 33 39 43 31 34 30 00 00 00 00 |



# **Revision history**

| Version | revision date | Revision Notes       | v'vd  |
|---------|---------------|----------------------|-------|
| 1.0     | -             | initial version      | -     |
| 1.1     | 2019/8/19     | formatting revisions | lyl   |
| 1.2     | 2023/1/13     | Revise Section 1.2.2 | Karry |

# **Contact us**

Technical support: <a href="mailto:support@cdebyte.com">support@cdebyte.com</a>

Documents and RF Setting download link: www.ebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Fax: 028-64146160 Web: www.ebyte.com

Address: B5 Mould Industrial Park, 199# Xiqu Ave, High tech Zone, Chengdu, Sichuan, China



(((•))) ® Chengdu Ebyte Electronic Technology Co.,Ltd.