BLF3G21-30

UHF power LDMOS transistor

Rev. 01 — 14 February 2007

Product data sheet

1. Product profile

1.1 General description

30 W LDMOS power transistor for base station applications at frequencies from HF to 2200 MHz.

Table 1. Typical class-AB RF performance

 I_{Dq} = 450 mA; T_h = 25 °C in a common source test circuit.

Mode of operation	f (MHz)	P _L (W)	G _p (dB)	η _D (%)	IMD3 (dB)	P _{L(1dB)} (W)
CW	2000	36	12.5	43	-	36
Two-tone	2000	30	13.5	35	-26	-
		0.1 to 10	13.8	-	< -50	-

Table 2. Typical class-A RF performance

 $I_{Dq} = 1$ A; $T_h = 25$ °C in a modified PHS test fixture.

Mode of operation	f	P _{L(AV)}	G _p	η _D	ACPR ₆₀₀
	(MHz)	(W)	(dB)	(%)	(dBc)
PHS	1880 to 1920	9	16	20	-75

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Excellent back-off linearity
- Typical PHS performance at a supply voltage of 26 V and I_{Dq} of 1 A:
 - ◆ Average output power = 9 W
 - ◆ Gain = 16 dB (typ)
 - ◆ Efficiency = 20 %
 - ◆ ACPR₆₀₀ = -75 dBc
- Easy power control
- Excellent ruggedness
- High power gain
- Excellent thermal stability
- Designed for broadband operation (HF to 2200 MHz)

- No internal matching for broadband operation
- ESD protection

1.3 Applications

- RF power amplifiers for GSM, PHS, EDGE, CDMA and W-CDMA base stations and multicarrier applications in the HF to 2200 MHz frequency range
- Broadcast drivers

2. Pinning information

Table 3. Pinning

Pin	Description	Simplified outline Symbol
1	drain	
2	gate	1
3	source	<u>1</u> 3 2
		2 sym112

^[1] Connected to flange

3. Ordering information

Table 4. Ordering information

Type number	Package					
	Name	Description	Version			
BLF3G21-30	-	flanged LDMOST ceramic package; 2 mounting holes; 2 leads	SOT467C			

4. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-	±15	V
I_D	drain current		-	4.5	Α
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		-	200	°C

5. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
$R_{th(j-c)}$	thermal resistance from junction to case	T_h = 25 °C; $P_{L(AV)}$ = 15 W	[1]	1.6	K/W
$R_{th(j-h)}$	thermal resistance from junction to heatsink	$T_h = 25 ^{\circ}C; P_{L(AV)} = 15 W$	[2]	2.1	K/W

^[1] Thermal resistance is determined under specified RF operating conditions

6. Characteristics

Table 7. Characteristics

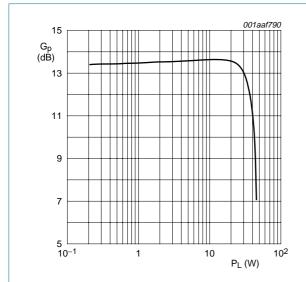
 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.7 \text{ mA}$	65	-	-	V
gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_{D} = 70 \text{ mA}$	2.0	-	3.0	V
drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 28 \text{ V}$	-	-	5	μΑ
drain cut-off current	$V_{GS} = V_{GS(th)} + 9 V;$ $V_{DS} = 10 V$	9	-	-	Α
gate leakage current	$V_{GS} = \pm 15 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	11	nΑ
transfer conductance	$V_{DS} = 10 \text{ V}; I_D = 2.5 \text{ A}$	-	3	-	S
drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 9 \text{ V}; I_D = 2.5 \text{ A}$	-	0.3	-	Ω
feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 28 \text{ V};$ f = 1 MHz	-	1.7	-	pF
	drain-source breakdown voltage gate-source threshold voltage drain leakage current drain cut-off current gate leakage current transfer conductance drain-source on-state resistance	$\begin{array}{ll} \mbox{drain-source breakdown} & V_{GS} = 0 \ \mbox{V; I}_D = 0.7 \ \mbox{mA} \\ \mbox{voltage} \\ \mbox{gate-source threshold voltage} & V_{DS} = 10 \ \mbox{V; I}_D = 70 \ \mbox{mA} \\ \mbox{drain leakage current} & V_{GS} = 0 \ \mbox{V; V}_{DS} = 28 \ \mbox{V} \\ \mbox{drain cut-off current} & V_{GS} = V_{GS(th)} + 9 \ \mbox{V;} \\ \mbox{V}_{DS} = 10 \ \mbox{V} \\ \mbox{gate leakage current} & V_{GS} = \pm 15 \ \mbox{V; V}_{DS} = 0 \ \mbox{V} \\ \mbox{transfer conductance} & V_{DS} = 10 \ \mbox{V; I}_D = 2.5 \ \mbox{A} \\ \mbox{drain-source on-state} & V_{GS} = V_{GS(th)} + 9 \ \mbox{V; I}_D = 2.5 \ \mbox{A} \\ \mbox{resistance} \\ \mbox{feedback capacitance} & V_{GS} = 0 \ \mbox{V; V}_{DS} = 28 \ \mbox{V;} \\ \mbox{V}_{DS} = 28 \ \mbox{V}_{DS} = 28 \ \$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{drain-source breakdown} & V_{GS} = 0 \text{ V; } I_D = 0.7 \text{ mA} & 65 & - & - \\ \text{gate-source threshold voltage} & V_{DS} = 10 \text{ V; } I_D = 70 \text{ mA} & 2.0 & - & 3.0 \\ \text{drain leakage current} & V_{GS} = 0 \text{ V; } V_{DS} = 28 \text{ V} & - & - & 5 \\ \text{drain cut-off current} & V_{GS} = V_{GS(th)} + 9 \text{ V;} & 9 & - & - \\ \text{gate leakage current} & V_{GS} = \pm 15 \text{ V; } V_{DS} = 0 \text{ V} & - & - & 11 \\ \text{transfer conductance} & V_{DS} = 10 \text{ V; } I_D = 2.5 \text{ A} & - & 3 & - \\ \text{drain-source on-state} & V_{GS} = V_{GS(th)} + 9 \text{ V; } I_D = 2.5 \text{ A} & - & 0.3 & - \\ \text{resistance} & \text{feedback capacitance} & V_{GS} = 0 \text{ V; } V_{DS} = 28 \text{ V;} & - & 1.7 & - \\ \end{array}$

7. Application information

Table 8. Application information

 V_{DS} = 26 V; T_h = 25 °C unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Mode of ope	eration: Two-tone CW (100 k	Hz tone spacing); f = 20	00 MHz	z; I _{Dq} = 4	50 mA	
Gp	power gain	$P_{L(PEP)} = 30 \text{ W}$	12.5	13.5	-	dB
RL _{in}	input return loss	$P_{L(PEP)} = 30 \text{ W}$	-	-16	-11	dB
η_{D}	drain efficiency	$P_{L(PEP)} = 30 \text{ W}$	32	35.0	-	%
IMD3	third order intermodulation	$P_{L(PEP)} = 30 \text{ W}$	-	-26	-23	dBc
	distortion	P _{L(PEP)} < 10 W	-	< -50	-	dBc
Mode of ope	eration: one-tone CW; f = 20	00 MHz; I _{Dq} = 450 mA				
Gp	power gain	$P_L = P_{L(1dB)} = 36 \text{ W}$	-	12.5	-	dB
η_{D}	drain efficiency	$P_L = P_{L(1dB)} = 36 \text{ W}$	-	43	-	%
Mode of operation: PHS; f = 1900 MHz; I _{Dq} = 1 A						
Gp	power gain	$P_{L(AV)} = 9 W$	-	16	-	dB
η_{D}	drain efficiency	$P_{L(AV)} = 9 W$	-	20	-	%

^[2] Depending on mounting condition in application

7.1 Ruggedness in class-AB operation

The BLF3G21-30 is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 26 V; f = 2200 MHz at rated load power.

50

 $V_{DS} = 26 \text{ V}; I_{Da} = 450 \text{ mA}; T_h = 25 \,^{\circ}\text{C}; f = 2000 \text{ MHz}$

Fig 1. Power gain as function of CW load power; typical values

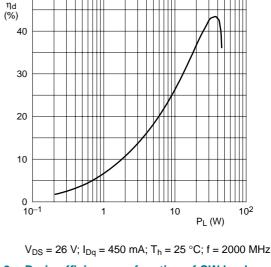
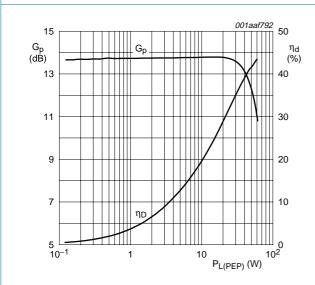
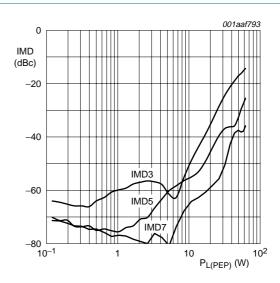




Fig 2. Drain efficiency as function of CW load power; typical values


 V_{DS} = 26 V; I_{Dq} = 450 mA; $T_h \le$ 25 °C; f_1 = 2000 MHz; f_2 = 2000.1 MHz

Fig 3. Two-tone power gain and drain efficiency as functions of peak envelope load power; typical values

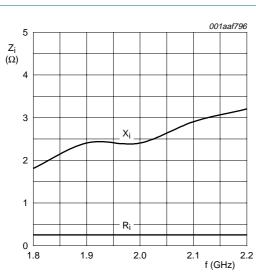

 $V_{DS} = 26 \text{ V; } I_{Dq} = 450 \text{ mA; } T_h \leq 25 \text{ °C; } \\ f_1 = 2000 \text{ MHz; } f_2 = 2000.1 \text{ MHz}$

Fig 4. Two-tone intermodulation distortion as function of peak envelope load power; typical values

- (1) 192 kHz channel bandwidth
- (2) -ACPR₃₀₀ at 192 kHz bandwidth
- (3) +ACPR₃₀₀ at 192 kHz bandwidth
- (4) -ACPR₆₀₀ at 192 kHz bandwidth
- (5) +ACPR₆₀₀ at 192 kHz bandwidth
- (6) -ACPR₉₀₀ at 192 kHz bandwidth
- (7) +ACPR $_{900}$ at 192 kHz bandwidth $V_{DS}=26 \text{ V; } I_{Dq}=1000 \text{ mA; } T_h \leq 25 \text{ °C;} \\ f_c=1900 \text{ MHz; } P_{L(AV)}=9 \text{ W}$

Fig 5. ACPR performance under PHS conditions, measured in application board

 V_{DS} = 26 V; I_{Dq} = 450 mA; P_L = 45 W; $T_h \leq$ 25 $^{\circ}C$

Fig 7. Input impedance as function of frequency (series components); typical values

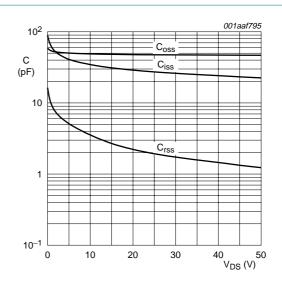
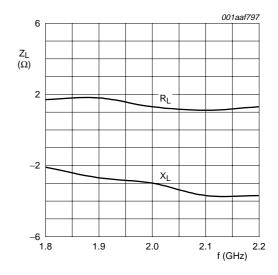



Fig 6. C_{iss}, C_{rss} and C_{oss} as functions of drain supply voltage; typical values

 V_{DS} = 26 V; I_{Dq} = 450 mA; P_L = 45 W; $T_h \leq$ 25 °C

Fig 8. Load impedance as function of frequency (series components); typical values

00 Test information

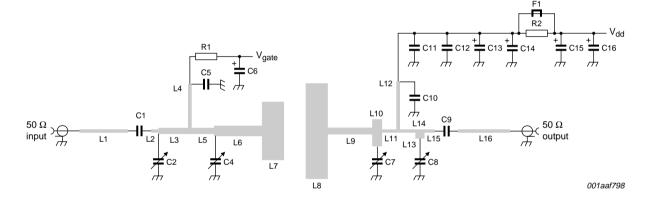


Fig 9. Class-AB test circuit for 2 GHz

BLF3G21-30_1

Product data sheet

Rev. 01 — 14 February 2007

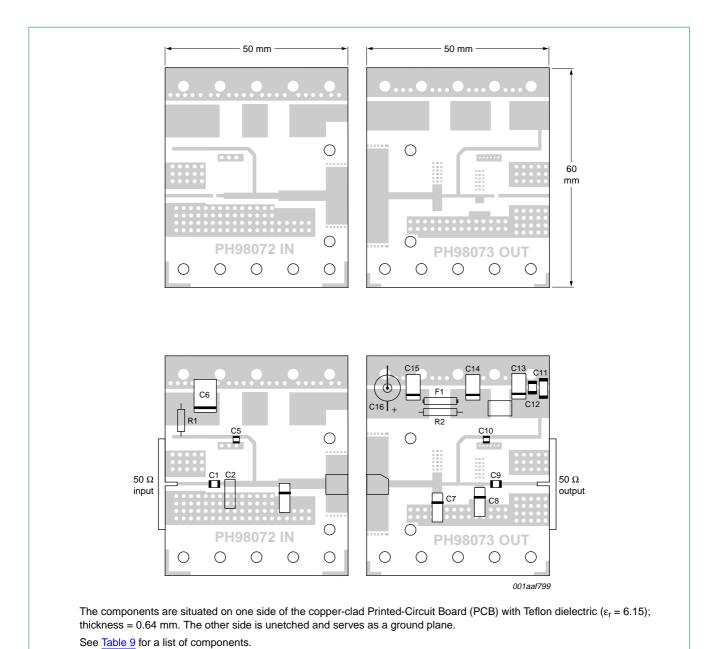


Fig 10. Component layout for 2 GHz class-AB test circuit

Table 9. List of components (see Figure 9 and Figure 10)

Component	Description		Value	Dimensions	Catalogue No.
C1, C9	multilayer ceramic chip capacitor	[2]	11 pF		
C2, C4, C7, C8	Tekelec variable capacitor; type 37271		0.6 pF to 4.5 pF		
C5, C10	multilayer ceramic chip capacitor	[1]	12 pF		
C6, C13, C14, C15	tantalum SMD capacitor		4.5 μF; 50 V		
C11	multilayer ceramic chip capacitor	[2]	1 nF		
C12	multilayer ceramic chip capacitor		100 nF		2222 581 16641
C16	electrolytic capacitor		100 μF; 63 V		2222 037 58101
F1	ferrite SMD bead			8DS3/3/8/9-4S2	4330 030 36301
L1	stripline	[3]	50 Ω	13 mm \times 0.9 mm	
L2	stripline	[3]	50 Ω	$2~\text{mm}\times0.9~\text{mm}$	
L3	stripline	[3]	34.3 Ω	15 mm \times 1.7 mm	
L4, L12	stripline	[3]	50 Ω	$37~\text{mm}\times0.9~\text{mm}$	
L5	stripline	[3]	34.3 Ω	$6~\text{mm} \times 1.7~\text{mm}$	
L6	stripline	[3]	23.6 Ω	13 mm \times 2.9 mm	
L7	stripline	[3]	5.6 Ω	$6~\text{mm} \times 15.8~\text{mm}$	
L8	stripline	[3]	3.5 Ω	$6~\text{mm} \times 26~\text{mm}$	
L9	stripline	[3]	31.9 Ω	12 mm \times 1.9 mm	
L10	stripline	[3]	24.9 Ω	$7.4~\text{mm} \times 2.7~\text{mm}$	
L11	stripline	[3]	50 Ω	$3 \text{ mm} \times 0.9 \text{ mm}$	
L13	stripline	[3]	50 Ω	4.15 mm × 0.9 mm	
L14	stripline	[3]	26.3 Ω	$2.5~\text{mm} \times 2.5~\text{mm}$	
L15	stripline	[3]	50 Ω	$2.8~\text{mm} \times 0.9~\text{mm}$	
L16	stripline	[3]	50 Ω	14 mm \times 0.9 mm	
R1, R2	metal film resistor		10 Ω; 0.6 W		2322 156 11009

^[1] American Technical Ceramics type 100B or capacitor of same quality

^[2] American Technical Ceramics type 100A or capacitor of same quality

^[3] The striplines are on a double copper-clad Printed-Circuit Board (PCB) with Teflon dielectric (ϵ_r = 6.15); thickness = 0.64 mm

9. Package outline

Flanged LDMOST ceramic package; 2 mounting holes; 2 leads

SOT467C

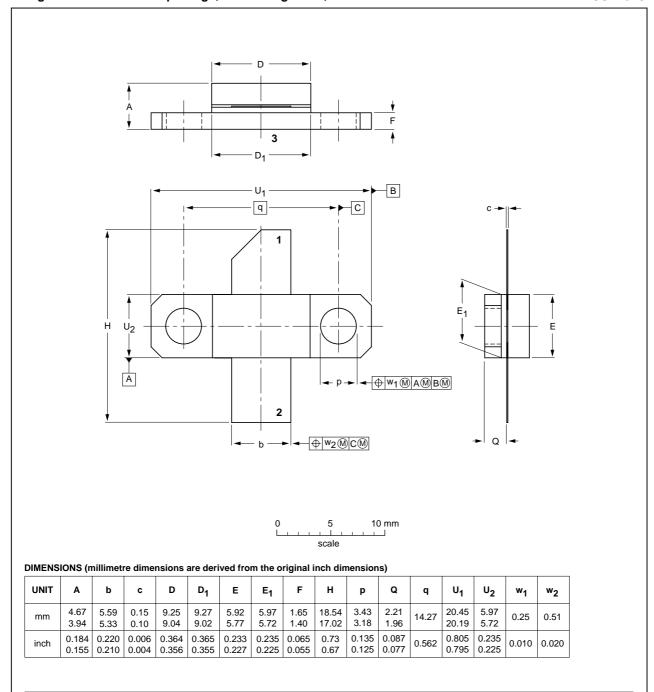


Fig 11. Package outline SOT467C

IEC

OUTLINE

VERSION

SOT467C

9 of 12

ISSUE DATE

99-12-06

99-12-28

EUROPEAN

PROJECTION

EIAJ

REFERENCES

JEDEC

10. Abbreviations

Table 10. Abbreviations

Acronym	Description	
CDMA	Code Division Multiple Access	
EDGE	Enhanced Data rates for the GSM Evolution	
GSM	Global System for Mobile communications	
HF	High Frequency	
LDMOS	Laterally Diffused Metal Oxide Semiconductor	
LDMOST	Laterally Diffused Metal-Oxide Semiconductor Transistor	
PHS	Personal HandyPhone System	
RF	Radio Frequency	
SMD	Surface-Mount Device	
UHF	Ultra High Frequency	
VSWR	Voltage Standing-Wave Ratio	
W-CDMA	Wideband Code Division Multiple Access	

11. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLF3G21-30_1	20070214	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

12.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

BLF3G21-30

UHF power LDMOS transistor

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 2
2	Pinning information 2
3	Ordering information
4	Limiting values 2
5	Thermal characteristics 3
6	Characteristics 3
7	Application information 3
7.1	Ruggedness in class-AB operation 4
8	Test information 6
9	Package outline 9
10	Abbreviations
11	Revision history
12	Legal information11
12.1	Data sheet status
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks11
13	Contact information
14	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

BLF3G21-30